Section 33.6 Lists of Set Classes
Below are lists of all set classes with prime form, Forte number, and interval vectors shown. Allen Forte published the original list of set classes in The Structure of Atonal Music in 1973. These lists use prime forms as calculated using the Rahn method. Prime forms of sets are ordered from most packed to the left to least packed to the left, as is found in the list of set classes in both John Rahnβs Basic Atonal Theory and Joseph Strausβ Introduction to Post-Tonal Theory. Sets are listed across from their complements. When taken together, complements can complete the 12-note chromatic scale when correctly transposed (and sometimes inverted).
Prime Form |
Forte Number |
Interval Vector |
Prime Form |
Forte Number |
Interval Vector |
(012) | 3β1 | 210000 | (012345678) | 9β1 | 876663 |
(013) | 3β2 | 111000 | (012345679) | 9β2 | 777663 |
(014) | 3β3 | 101100 | (012345689) | 9β3 | 767763 |
(015) | 3β4 | 100110 | (012345789) | 9β4 | 766773 |
(016) | 3β5 | 100011 | (012346789) | 9β5 | 766674 |
(024) | 3β6 | 020100 | (01234568T) | 9β6 | 686763 |
(025) | 3β7 | 011010 | (01234578T) | 9β7 | 677673 |
(026) | 3β8 | 010101 | (01234678T) | 9β8 | 676764 |
(027) | 3β9 | 010020 | (01235678T) | 9β9 | 676683 |
(036) | 3β10 | 002001 | (01234679T) | 9β10 | 668664 |
(037) | 3β11 | 001110 | (01235679T) | 9β11 | 667773 |
(048) | 3β12 | 000300 | (01245689T) | 9β12 | 666963 |
Prime Form |
Forte Number |
Interval Vector |
Prime Form |
Forte Number |
Interval Vector |
(0123) | 4β1 | 321000 | (01234567) | 8β1 | 765442 |
(0124) | 4β2 | 221100 | (01234568) | 8β2 | 665542 |
(0125) | 4β4 | 211110 | (01234578) | 8β4 | 655552 |
(0126) | 4β5 | 210111 | (01234678) | 8β5 | 654553 |
(0127) | 4β6 | 210021 | (01235678) | 8β6 | 654463 |
(0134) | 4β3 | 212100 | (01234569) | 8β3 | 656542 |
(0135) | 4β11 | 121110 | (01234579) | 8β11 | 565552 |
(0136) | 4β13 | 112011 | (01234679) | 8β13 | 556453 |
(0137) | 4βZ29 | 111111 | (01235679) | 8βZ29 | 555553 |
(0145) | 4β7 | 201210 | (01234589) | 8β7 | 645652 |
(0146) | 4βZ15 | 111111 | (01234689) | 8βZ15 | 555553 |
(0147) | 4β18 | 102111 | (01235689) | 8β18 | 546553 |
(0148) | 4β19 | 101310 | (01245689) | 8β19 | 545752 |
(0156) | 4β8 | 200121 | (01234789) | 8β8 | 644563 |
(0157) | 4β16 | 110121 | (01235789) | 8β16 | 554563 |
(0158) | 4β20 | 101220 | (01245789) | 8β20 | 545662 |
(0167) | 4β9 | 200022 | (01236789) | 8β9 | 644464 |
(0235) | 4β10 | 122010 | (02345679) | 8β10 | 566452 |
(0236) | 4β12 | 112101 | (01345679) | 8β12 | 556543 |
(0237) | 4β14 | 111120 | (01245679) | 8β14 | 555562 |
(0246) | 4β21 | 030201 | (0123468T) | 8β21 | 474643 |
(0247) | 4β22 | 021120 | (0123568T) | 8β22 | 465562 |
(0248) | 4β24 | 020301 | (0124568T) | 8β24 | 464743 |
(0257) | 4β23 | 021030 | (0123578T) | 8β23 | 465472 |
(0258) | 4β27 | 012111 | (0124578T) | 8β27 | 456553 |
(0268) | 4β25 | 020202 | (0124678T) | 8β25 | 464644 |
(0347) | 4β17 | 102210 | (01345689) | 8β17 | 546652 |
(0358) | 4β26 | 012120 | (0134578T) β1β | 8β26 | 456562 |
(0369) | 4β28 | 004002 | (0134679T) | 8β28 | 448444 |
Prime Form |
Forte Number |
Interval Vector |
Prime Form |
Forte Number |
Interval Vector |
(01234) | 5β1 | 432100 | (0123456) | 7β1 | 654321 |
(01235) | 5β2 | 332110 | (0123457) | 7β2 | 554331 |
(01236) | 5β4 | 322111 | (0123467) | 7β4 | 544332 |
(01237) | 5β5 | 321121 | (0123567) | 7β5 | 543342 |
(01245) | 5β3 | 322210 | (0123458) | 7β3 | 544431 |
(01246) | 5β9 | 231211 | (0123468) | 7β9 | 453432 |
(01247) | 5βZ36 | 222121 | (0123568) | 7βZ36 | 444342 |
(01248) | 5β13 | 2221311 | (0124568) | 7β13 | 443532 |
(01256) | 5β6 | 311221 | (0123478) | 7β6 | 533442 |
(01257) | 5β14 | 221131 | (0123578) | 7β14 | 443352 |
(01258) | 5βZ38 | 212221 | (0124578) | 7βZ38 | 434442 |
(01267) | 5β7 | 310132 | (0123678) | 7β7 | 532353 |
(01268) | 5β15 | 220222 | (0124678) | 7β15 | 442443 |
(01346) | 5β10 | 223111 | (0123469) | 7β10 | 445332 |
(01347) | 5β16 | 213211 | (0123569) | 7β16 | 435432 |
(01348) | 5βZ17 | 212320 | (0124569) | 7βZ17 | 434541 |
(01356) | 5βZ12 | 222121 | (0123479) | 7βZ12 | 444342 |
(01357) | 5β24 | 131221 | (0123579) | 7β24 | 353442 |
(01358) | 5β27 | 122230 | (0124579) | 7β27 | 344451 |
(01367) | 5β19 | 212122 | (0123679) | 7β19 | 434343 |
(01368) | 5β29 | 122131 | (0124679) | 7β29 | 344352 |
(01369) | 5β31 | 114112 | (0134679) | 7β31 | 336333 |
(01457) | 5βZ18 | 212221 | (0145679) β2β | 7βZ18 | 434442 |
(01458) | 5β21 | 202420 | (0124589) | 7β21 | 424641 |
(01468) | 5β30 | 121321 | (0124689) | 7β30 | 343542 |
(01469) | 5β32 | 113221 | (0134689) | 7β32 | 335442 |
(01478) | 5β22 | 202321 | (0125689) | 7β22 | 424542 |
(01568) β3β | 5β20 | 211231 | (0125679) β4β | 7β20 | 433452 |
(02346) | 5β8 | 232201 | (0234568) | 7β8 | 454422 |
(02347) | 5β11 | 222220 | (0134568) | 7β11 | 444441 |
(02357) | 5β23 | 132130 | (0234579) | 7β23 | 354351 |
(02358) | 5β25 | 123121 | (0234679) | 7β25 | 345342 |
(02368) | 5β28 | 122212 | (0135679) | 7β28 | 344433 |
(02458) | 5β26 | 122311 | (0134579) | 7β26 | 344532 |
(02468) | 5β33 | 040402 | (012468T) | 7β33 | 262623 |
(02469) | 5β34 | 032221 | (013468T) | 7β34 | 254442 |
(02479) | 5β35 | 032140 | (013568T) | 7β35 | 254361 |
(03458) | 5βZ37 | 212320 | (0134578) | 7βZ37 | 434541 |
In the table below, when no set is listed across from a sixβnote set, it is selfβcomplementary (that is, it can combine with a transposed and possibly inverted set of itself to complete a 12-note chromatic scale.
Prime Form |
Forte Number |
Interval Vector |
Prime Form |
Forte Number |
Interval Vector |
(012345) | 6β1 | 543210 | |||
(012346) | 6β2 | 4443211 | |||
(012347) | 6βZ36 | 433221 | (012356) | 6βZ3 | 433221 |
(012348) | 6βZ37 | 432321 | (012456) | 6βZ4 | 432321 |
(012357) | 6β9 | 342231 | |||
(012358) | 6βZ40 | 333231 | (012457) | 6βZ11 | 333231 |
(012367) | 6β5 | 422232 | |||
(012368) | 6βZ41 | 332232 | (012467) | 6βZ12 | 332232 |
(012369) | 6βZ42 | 324222 | (013467) | 6βZ13 | 324222 |
(012378) | 6βZ38 | 421242 | (012567) | 6βZ6 | 421242 |
(012458) | 6β15 | 323421 | |||
(012468) | 6β22 | 241422 | |||
(012469) | 6βZ46 | 233331 | (013468) | 6βZ24 | 233331 |
(012478) | 6βZ17 | 322332 | (012568) | 6βZ43 | 233331 |
(012479) | 6βZ47 | 233241 | (013568) | 6βZ25 | 233241 |
(012569) | 6βZ44 | 313431 | (013478) | 6βZ19 | 313431 |
(012578) | 6β18 | 322242 | |||
(012579) | 6βZ48 | 232341 | (013578) | 6βZ26 | 232341 |
(012678) | 6β7 | 420243 | |||
(013457) | 6βZ10 | 333321 | (023458) | 6βZ39 | 333321 |
(013458) | 6β14 | 323430 | |||
(013469) | 6β27 | 225222 | |||
(013479) | 6βZ49 | 224322 | (013569) | 6βZ28 | 224322 |
(013579) | 6β34 | 142422 | |||
(013679) | 6β30 | 224223 | |||
(023679) β5β | 6βZ29 | 224232 | (014679) | 6βZ50 | 224232 |
(014568) | 6β16 | 322431 | |||
(014579) β6β | 6β31 | 223431 | |||
(014589) | 6β20 | 303630 | |||
(023457) | 6β8 | 343230 | |||
(023468) | 6β21 | 242412 | |||
(023469) | 6βZ45 | 234222 | (023568) | 6βZ23 | 234222 |
(023579) | 6β33 | 143241 | |||
(024579) | 6β32 | 143250 | |||
(02468T) | 6β35 | 060603 |
Forte prime form for 8β26: (0124579T)
Forte prime form for 7βZ18: (0123589)
Forte prime form for 5β20: (01378)
Forte prime form for 7β20: (0124789)
Forte prime form for 6βZ29: (013689)
Forte prime form for 6β31: (013589)